24 research outputs found

    Attributes2Classname: A discriminative model for attribute-based unsupervised zero-shot learning

    Full text link
    We propose a novel approach for unsupervised zero-shot learning (ZSL) of classes based on their names. Most existing unsupervised ZSL methods aim to learn a model for directly comparing image features and class names. However, this proves to be a difficult task due to dominance of non-visual semantics in underlying vector-space embeddings of class names. To address this issue, we discriminatively learn a word representation such that the similarities between class and combination of attribute names fall in line with the visual similarity. Contrary to the traditional zero-shot learning approaches that are built upon attribute presence, our approach bypasses the laborious attribute-class relation annotations for unseen classes. In addition, our proposed approach renders text-only training possible, hence, the training can be augmented without the need to collect additional image data. The experimental results show that our method yields state-of-the-art results for unsupervised ZSL in three benchmark datasets.Comment: To appear at IEEE Int. Conference on Computer Vision (ICCV) 201

    Zero-Shot Object Detection by Hybrid Region Embedding

    Full text link
    Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD

    Image Captioning with Unseen Objects

    Full text link
    Image caption generation is a long standing and challenging problem at the intersection of computer vision and natural language processing. A number of recently proposed approaches utilize a fully supervised object recognition model within the captioning approach. Such models, however, tend to generate sentences which only consist of objects predicted by the recognition models, excluding instances of the classes without labelled training examples. In this paper, we propose a new challenging scenario that targets the image captioning problem in a fully zero-shot learning setting, where the goal is to be able to generate captions of test images containing objects that are not seen during training. The proposed approach jointly uses a novel zero-shot object detection model and a template-based sentence generator. Our experiments show promising results on the COCO dataset.Comment: To appear in British Machine Vision Conference (BMVC) 201

    Zero-Shot Sign Language Recognition: Can Textual Data Uncover Sign Languages?

    Full text link
    We introduce the problem of zero-shot sign language recognition (ZSSLR), where the goal is to leverage models learned over the seen sign class examples to recognize the instances of unseen signs. To this end, we propose to utilize the readily available descriptions in sign language dictionaries as an intermediate-level semantic representation for knowledge transfer. We introduce a new benchmark dataset called ASL-Text that consists of 250 sign language classes and their accompanying textual descriptions. Compared to the ZSL datasets in other domains (such as object recognition), our dataset consists of limited number of training examples for a large number of classes, which imposes a significant challenge. We propose a framework that operates over the body and hand regions by means of 3D-CNNs, and models longer temporal relationships via bidirectional LSTMs. By leveraging the descriptive text embeddings along with these spatio-temporal representations within a zero-shot learning framework, we show that textual data can indeed be useful in uncovering sign languages. We anticipate that the introduced approach and the accompanying dataset will provide a basis for further exploration of this new zero-shot learning problem.Comment: To appear in British Machine Vision Conference (BMVC) 201

    Learning Actions From the Web

    Full text link
    This paper proposes a generic method for action recognition in uncontrolled videos. The idea is to use images collected from the Web to learn representations of actions and use this knowledge to automatically annotate actions in videos. Our approach is unsupervised in the sense that it requires no human intervention other than the text querying. Its benefits are two-fold: 1) we can improve retrieval of action images, and 2) we can collect a large generic database of action poses, which can then be used in tagging videos. We present experimental evidence that using action images collected from the Web, annotating actions is possible

    Object, Scene and Actions

    Full text link
    In many cases, human actions can be identified not only by the singular observation of the human body in motion, but also properties of the surrounding scene and the related objects. In this paper, we look into this problem and propose an approach for human action recognition that integrates multiple feature channels from several entities such as objects, scenes and people. We formulate the problem in a multiple instance learning (MIL) framework, based on multiple feature channels. By using a discriminative approach, we join multiple feature channels embedded to the MIL space. Our experiments over the large YouTube dataset show that scene and object information can be used to complement person features for human action recognition

    Object Recognition and Localization via Spatial Instance Embedding

    Full text link
    We propose an approach for improving object recognition and localization using spatial kernels together with instance embedding. Our approach treats each image as a bag of instances (image features) within a multiple instance learning framework, where the relative locations of the instances are considered as well as the appearance similarity of the localized image features. The introduced spatial kernel augments the recognition power of the instance embedding in an intuitive and effective way, providing increased localization performance. We test our approach over two object datasets and present promising results
    corecore